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Climb of a bore on a beach 
Part 2. Non-uniform beach slope 

By M. C. SHEN AND R. E. MEYER 
Brown University, Providence, Rhode Island 

(Received 39 September 1963) 

The investigation of the shoreward travel of a bore into water a t  rest is extended 
to beaches of non-uniform slope. It is shown that the shore singularity estab- 
lished in Part 1 (Ho & Meyer 1963) still furnishes an approximate solution. The 
shape of the beach, like the shape of the wave forming the bore, is found to 
influence the bore development close to shore almost only in so far as it deter- 
mines the basic velocity scale of the bore. 

1. Introduction 
The investigation of the climb of a bore into water at rest on a beach reported 

in Part 1 (Ho & Meyer 1963) has led to an understanding of the shore singularity 
for a fairly large range of boundary conditions, but only for beaches of uniform 
slope. Such beaches are mathematically exceptional in that a transformation of 
the non-linear shallow-water equations into the linear Euler-Poisson-Darboux 
equation is possible only for them. It will be shown now that the main results 
regarding the shore singularity are not similarly exceptional. 

The support which this gives to the work reported in Part 1 appears desirable, 
in view of the somewhat unconventional approach there employed and the quite 
heavy reliance there placed on the mathematical simplification afforded by 
uniformity of the beach slope. Actually, the arguments of Part 1 do not rely 
directly on linearity and superposition, since the approach is based mainly on the 
theory of the structure of the non-singular Euler-Poisson-Darbous equation. 
But much as it be plausible that the basic structure of the solutions depend little 
on the uniformity of beach slope, the canonical equations, from which the 
structure is deduced, are doubled in number, and made more complicated in 
form, by abandonment of the uniformity of beach slope. Accordingly, bridging 
the gap between the seaward boundary condition and the shore irregularity 
becomes a more formidable task. 

It is not, in fact, attempted here. Rather, it  will be shown in $ 2  that some 
basic conclusions of Part 1 depend only on the assumption that the bore reaches 
the shore at a finite time. Assuming the beach slope to be finite and non-zero a t  
the initial shore position, and the beach curvature to be continuous in a neigh- 
bourhood of that position, or at any rate, not too strongly singular there, i t  will 
then be deduced in 9 3 that the solution of Part 1 is still an approximate solution 
near the shore. It furnishes again a very detailed asymptotic description of the 
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bore development, indicating that all wave shapes and all beach shapes-within 
quite a wide range-lead effectively to only a two-parameter family of bore 
developments near the shore. These two parameters are the beach slope at  the 
initial shore position and the basic velocity scale of the motion. 

2. Governing equations 
The shoreward propagation of a straight bore into undisturbed water of depth 

h,(x) has been studied in Part 1 t on the basis of the non-linear, first-order shallow- 
water theory (Stoker 1957). The differential equations of the water motion and 
the bore relations are respectively given by (I. 2 ) ,  (I. 3) and (I. 4) to (I. 6). The 
properties of the solutions obtained in Part 1 were derived only for the particular 
case of constant beach slope. In the following, it will be assumed that the beach 

( 1 )  
slope 

dh,,/dx = -y(x)/g + const., 

with y ( x )  continuous and y(0)  = yo > 0. The horizontal distance x will again be 
measured landward from the initial shore position, so that ho(0) = 0,  and since 
our concern is with the neighbourhood of the initial shore position, no generaIity 
is lost in taking h,(x) to be a monotonically decreasing function and 

+) = Y ( 4  -Yo 
to be non-zero for x < 0. 

(figure I .  1)  and h(x ,  t ) ,  the disturbed water depth. Let 
Recall that u denotes the water velocity in the direction of x increasing 

c2 = gh(x,t) ( C  2 0) ,  ( 2 )  

and 2c+u+yot-u,  = a, 2c-u-yot+uo = /3, (3) 

where uo is a constant. The shallow-water equations are hyperbolic, and if [, 7 
denote parameters labelling respectively the advancing and receding charac- 
teristics in a 1 - 1 manner, (I. 2 , 3 )  may be written 

ax at aa at 
- = (u+c) - - ,  
a7 a7 ?7 a7 

-+8(x)-  = 0, (4) 

In  addition to the bore relations, as in Part 1, some boundary conditions are 
required on a seaward boundary which may be taken ( 3  I. 7 )  to be a segment 
either of a line x = const. < 0 or of a receding characteristic line C (figure 1). 

We now introduce the assumption that the bore reaches the shore at  a finite 
time, again chosen as t = 0. This implies ( 3  I. 3) both the relations 

ch+ 0 as t - t  0 ,  (6) 

h, > ho for t < 0, (7 )  

ub ch  > vh > cb > 0, 2’0 > ?hb > 0 for t < 0, ( 8 )  

t Ho & Meyer (1962). Equation, figure and section number of Part 1 will be distin- 
guished by a prefix I. 
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and the existence of a limiting characteristic L. Moreover, it  implies ( 6  I. 3) that 
we may, by reducing the time interval To 6 t < 0 during which the bore develop- 
ment is studied, ensure the absence of any secondary bores from the region I1 
(figure 1) bounded by the bore B, limiting characteristic L and seaward boundary 
C. Then a and /3 are continuous functions of time on the seaward boundary, and 

X 

D’ 

t 

FIGURE 1. Diagram of (a, t)-plane showing locus of successive bore positions 
(bore initially supercritical). 

the solution of (4), (5) must be continuous in the interior of region 11. Since 6(x) 
is continuous, the uniform continuity of the solution in region I1 follows from the 
second of (4) and from (3),  which show that u b  tends to a finite limit as t + 0. The 
constant u,, of (3) will again be identified with this limit, so that 

a+., /3+0 as t+O on L, (9) 

U b - f U O ,  a b - f o ,  Pb’O as t+  0 on B, (10) 

and from (I. 5,6), hb and h, must vanish together. 
We shall also assume that physically consistent seaward boundary conditions 

are set, and as in Part 1, the absence of secondary bores then implies (Mahony 
1956) the absence of limit points at/?[ = 0 or at/aq = 0 in the interior of region 11. 

We may consider x ,  t and u as functions of a and p, and then (5) and (6) become 
formally 

(11) 

(12) 

I [x, - (U + C) t,] aa/av + [xa - (u + C) ta] apjar = 0, 

(1 + st,) aa/ar + atp apjar = 0, 

[xa - - C) t,] aajat + [Xa - (u - C) t a 
st, aala< - (1 - att8) aplat = = 0, O’} 

where suffixes denote partial differentiation. Now, S(x), atlac and ;it/ar are non- 
zero in the interior of region I1 (figure l),  and the same follows for iialap and ap/at 
from (4) and (5). The necessary and sufficient conditions for (11) and (12) to 
possess such solutions are respectively 

xa-(u+c)tg = sj, (13) 



where 
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x,-(u-c)t ,  = sj, 

,j = x, tp - xp t, = qx, t)/a(a, p). 

3. An approximate solution 
The problem at hand is to solve (13), (14) together with the bore relations and 

seaward boundary conditions as in Part 1.  The dominant feature of the dif- 
ferential equations, however, is the same shore-singularity which also dominates 
them for a beach of uniform slope, and it is therefore plausible that the solution 
should again be dependent on the seaward boundary conditions mainly because 
they determine the limit velocity uo. A quantitative analysis of the dependence 
of uo on these boundary conditions is still outstanding even for the uniformly 
sloping beach. An analysis of the dependence of u, on beach slope variations 
therefore appears premature, and we shall limit ourselves to showing that (13), 
(14) and the bore conditions can be satisfied asymptotically by an approximation 
possessing the type of shore singularity derived in Part 1.  This will enable us to 
confirm the existence of an asymptotic approximation which, apart from the 
basic velocity scale uo, depends only very weakly on beach slope variations. 

Part 1 is devoted to the discussion of a set of functions x = S ( a ,  p), t = T(a ,  p), 
C = (a  + p)/4, U = u(a, p) = Uo - yo T + (a  - p)/%, t+, = v(p) and a6 = Ab(p) which 

(16) 
satisfy 

In  the region I1 of figures 1 and I. 3, i.e. for db 2 a > 0 andp > 0, these functions 
have the properties that (I) 

S, = (U-c)T,, X,q = (U+c)Tf l .  

x = o ( C 4 ) ,  u = u,--C+o(c4), v-u, = 0 ( ~ 2 ) ,  (17) 

T, = o(c-q ,  T~ = o ( C 3 ) ,  A,  = o p ) ,  (18) 

J = a(S, T) /? (a ,P)  = - ~ c T ,  Tp = O ( b ) ,  

as c --f 0. From (16), therefore. 

(19) 

while ( U  + c) T, = O(c3) and ( U  - c )  T, = O(c-g). Thus SJ becomes negligible in 
comparison with both the left-hand sides and right-hand sides of (16) and hence, 
the functions S, T ,  U and c satisfy (13) and (14) to a first approximation, 
provided 6(x) = o(zB). 

By (13) and (14), the bore condition dxb/dtb = v b  is equivalent to 

(u - w b  - c )  t, da,/dp + (u - vb + c) t, = - (1  + dccb/dp) Sj on a = a,(/?), (20) 

while (I) 

(0 -  V-c)T,dAb/d,4+(U- V+c)T ,  = 0 on a = A&?). (21) 

From (17) and (18), ( U -  V + c ) T p  = O(c4), and so by (19), U ,  V ,  c ,  T and A ,  
satisfy (20) asymptotically, if 6 = o(z8). The other bore conditions (1.5, 6) 

ub/v6 = - ho(x,)/hb, 2vi = gh,(' + hb/hO(xb)}, (22 )  

do not involve x, t or their derivatives directly and, due to the continuity of h,(x), 
are obviously satisfied asymptotically. In  short, the asymptotic solution of Part 1 
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satisfies the shallow-water equations and bore conditions asymptotically to a 
first approximation even on a beach of non-uniform slope, provided only that 
the beach curvature does not possess too strong a singularity at the initial shore 
position. This approximation, moreover, has the properties 

(23) t = o(C4), = uo - 2c + 0 ( ~ 4 ) ,  zib - ub = o(q ,  
t ,  = O ( ~ - S ) ,  tp = 0 ( ~ 3 ) ,  ab = O ( ~ Y ) .  

It may be worth noting that any more detailed description of the water 
acceleration must generally be expected to depend on the beach slope variation. 
From I, a number a, > 0 exists such that 

(a+P)STa-ao = O(C9), 

(a+/3)Sta-ao = O(c%) 

but comparison of (20) and (21) shows that an asymptotic solution with the 
property 

can be anticipated only if S = O(x$), which appears too stringent a condition for 
most practical cases. 

None the less, a very detailed asymptotic description of the bore development 
can be obtained from the first approximation, much as in Part 1. Let 

z = c,/(u~ + 2C,), M = l i ’b/Cb, H ho(xb)/hb, ( 2 4  

(25) 

theii (I) the bore conditions ( 2 2 )  give 31 and H in terms of z by 

2-1( 1 - 22) = Ub/Cb = M (  1 - H ) ,  1c12 = (1 + H-1)/2 

and by (1) and (23) to (25), 

(26) 

Since yo/y = 1 + O(S), (3) now gives (if lim (a  +-)$ t, be again denoted by q,) 

cb/uo = z ( 1  - H ~ / H ) - I  [I - ~ ~ ~ - ~ ( ( Y , ~ , ) - ~ u ~ ~ ~ + o o ( Z ~ ) I ,  (27) 

which is identical with (I. 48), provided S = o(x3). By (24) and (25), the asymp- 
totic approximations obtained for vb/Uo, ub/uo and gh,(x,)/u; are also the same as 
those derived in Part 1, and the main influence of beach slope variation on the 
asymptotic behaviour of all these variables is thus seen to be exerted ‘indirectly ’ 
through their influence on u, and a,. The relation between xb and h,(zb), however, 
differs from that envisaged in Part 1 ; in the most common case of non-zero, finite 
beach curvature, 6 = O(x)  = O(c4), so that a term O(cE) depending on S appears in 
the approximation for x b .  A term of the same order appears in that for tb, due to 
the factor yo/y in (26), and these terms are large compared with those depending 
on a, in the respective approximations (I). 
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